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1. INTRODUCTION

Recently Lipow and Schoenberg [4] have studied the case ofcardinal splines
of degree n with values and the first r - 1 derivatives prescribed at the
integers. This leads them to a study of the zeros of a polynomial JIn.rCA)
which is related to the characteristic polynomial P - AI = IIG) - AOO II of
the Pascal matrix P = IICDrl (i,j = 0, 1, ...). They use a well-known theorem
of Gantmacher and Krein on the simplicity of the eigenvalues of oscillating
matrices to prove that JIn,rCA) has real simple zeros of sign C-I)T. This result
is then applied to solve the interpolation problem.

Here we propose to study the problem when the cardinal spline of degree n
has its values and first r - I derivatives prescribed at the points 8 + v,
Cv = 0, ±I, ±2,...) where °~ 8 < I is a fixed number. For 8 = °we get
the results of Lipow and Schoenberg [4]. As in the case of Lipow and
Schoenberg, the main difficulty is to prove that the zeros of the polynomial
JIn,rC8; A) are real and simple. Our method is based on a determinantal
identity Csee [I, p. 7]) instead of the Gantmacher and Krein Theorem and is
similar to that in [3].

In Section 2 we state the problem of interpolation and the main theorem.
The eigensplines and eigenvalues are dealt with in Section 3 where the
polynomial JIn,rC8; A) is explicitly defined. In Section 4 we give a proof of the
main Theorem I which is based on Theorems 2 and 3 ,which are proved in
Sections 7 and 8. Some useful identities are proved in Section 5, while
Section 6 deals with the Hankel determinant of the exponential Euler
polynomials AnC8; A) and their relation to the polynomials JIn.rC8; .\).
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2. STATEMENT OF THE PROBLEM
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Let 11, I' be natural numbers with n ?o I' and suppose we are prescribed r

bi-infinite sequences of data

ylS) = (y~S» (s = 0, 1,... , I' - 1). (2.1)

Let Sf;,.r denote the class of cardinal spline functions S(x) of degree n such
that S(x) E cn - r ( - CO, co).

PROBLEM I. To find S(x) E Sf;"r such that

Sls)(V + 0) = y~ s) (s = 0, 1,... , I' - 1) V integers v, (2,2)

where °~ 0 < 1.
We can easily prove the following lemma.

LEMMA 1. If°< 0 < 1, the interpolation Problem I always has solutions
which form a linear manifold in .9'",r of dimension n - I' + 1. For () = 0, the
linear manifold is of dimension n - 21' + 1.

The proof follows the same pattern as in Lipow and Schoenberg [4].
Our object is to prove

THEOREM 1. If 0 is not a zero of the polynomial ll".r<x; (-1)') and if the
data (2.1) satisfy

y~S) = 0(1 v n (s = 0, 1,2,... , I' - 1) (2.3)

for some y > 0, then there exists a unique spline S(x) E Sf;"r satisfying (2.2)
such that

S(x) = 0(1 x [").

3. EIGENSPLINES AND CHARACTERISTIC POLYNOMIALS

(2.4)

We shall denote the null space of .9'".r with respect to Problem I by :J~,r ,
which is defined by

Y~,r = {S(x) E .'7'".r: S(s)(v + 0) = °(s = 0,1, ... , I' - 1) V integers v}. (3.1)

The eigensplines of .9'",r corresponding to this problem are those splines
S(x) E :J~.r such that

S(x + 1) = AS(x) (x E IR) A =1= O. (3.2)

We shall call ,\ the corresponding eigenvalue.
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LEMMA 2. If SeX) is an eigenspline in Y~,r with eigenvalue A, then
.'1'(x) = S(- x) is an eigenspline in .1'~~: with eigenvalue A-I.

We omit the proof, which is almost obvious.
Suppose Sex) E Y~.r is an eigenspline satisfying the functional relation (3.2),

and suppose P(x) is the polynomial component of Sex) in [0, 1]. Then

P<S)(l) = AP<s)(O)

p<S)(O) = 0

(s = 0, 1, ,11 - r),

(s = 0, 1, , r - 1).
(3.3)

If we set P(x) = aoXn + (;) a1x n- 1 + ... + an, the coefficients ao , a1 , ... , an
are to be determined by (3.3), which gives a homogeneous system of equations
whose determinant is IIn.r(O; A), where

... (, ~ 1) (l - A) 0

.............. (' ~ 1) (1 _ A) 0 ..

o

o

...................................... (1 - A) 0

.................................................... (1 - A)

O..-r+t (11 - ~ + 1) On-r .. 0 .. ··· ...... · o

0..- 1 C~ 1) 0..- 2 0
0" (7) On-l .. .. .. . (n ~ 1) 0

(3.4)

Observe that II..AO; A) is a polynomial of degree n - r + 1 in A and of
degree r(n - r + 1) in O.

From (3.4) it is easy to see that if r <; n ~ 2r - 1, we have

When n ;;:, 2r - 1

II..,rCO; A) = II..,rCA) = 1,

lIn.rCI; A) = (_I)(n+l)( ..-r+!) An- r+!.

II...r(O; A) = II..,r(A),

II..,rCI, A) = ArlI..AA).

(3.5)

(3.6)
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THEOREM 2. If 0 < 0 < 1 and n :? r, the polynomial llnAO; A) as a
polynomial in Ahas only real zeros, all simple and of sign (-1)'. Furthermore
the zeros oflln.r(O; A) and lln-1,r(O; A) interlace.

Remark I. If 0 = 0 or t, it follows from Lemma 2 that lln,r(O; A) is a
reciprocal polynomial in A.

THEOREM 3. The polynomial lln,r(O; (-I)') is ofdegree r(n - r + I) in 0
and has exactly n - r + 1 zeros, all simple, in (0, 1) if r ~ n ~ 2r - 1. For
n :? 2r - I, this polynomial has exactly r - 1 (or r) simple zeros in (0, 1)
according as n is even or odd.

Remark 2. If r = 1 and n is odd the only zero of lln,r(O; (-In in (0, 1)
is .~. If n is even and r = 1, this polynomial has no zero in (0, 1) but 0 = 0
is a zero. In fact it can be shown thatlln •1(O; -1) = (-2)n En(O) where En(O)
is the classical Euler polynomial.

Remark 3. If e = t, it follows from Remark 1 that lln.r(t; A) is a
reciprocal polynomial of degree n - r + 1. Thus lln,r(t; (-1)') = 0 or i=- 0
according as n - r + 1 is odd or even. It follows from Theorem 1 that if
o= } the interpolatory spline is unique if nand r have different parity.

Remark 4. It follows from (3.6) that if n is even, lln,r(O; (-1)') =
llnAl; (-1)') = O.

4. SOLUTION OF THE INTERPOLATION PROBLEM

We shall require Theorems 2 and 3 for the solution of the interpolation
problem formulated in Section 2. By Theorem 2 we know that the zeros Aj
(j = 1,2,... , n - r + 1) of lln,r(O; A) are ditsinct. The eigensplines Sj(x)
are constructed from Aj such that

S;(x + 1) = AjS;(X) (x E IR). (4.1)

Since the ..\/s are distinct Sj(x) (j = 1,2,... , n - r + 1) are linearly inde­
pendent and so we have the following:

LEMMA 3. If Sex) E .9'~.r , then there is a unique representation

n-r+l

Sex) = L cjS;(x)
j=l

with appropriate constants Cj .

(4.2)
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We are now ready to prove Theorem 1. By assumption on (),
lln,r(e; (-y) oF 0, hence no eigenvalues lie on the unit circle. Suppose

I Aj I < 1

I Aj I > 1

for j = 1,2,... , k,

for j = k + 1, ... , n - r + 1.
(4.3)

Following an argument similar to that of Lipow and Schoenberg [4, p. 291]
we may set

where

k

= I CjSj(X)
j~l

n-r+l
Ls(x) = I djSlx)

j~k+l

= P(x)

(x ~ 1),

(x ~ 0),

(0 ~ x ~ 1),

(4.4)

P(x) = ao(x - e)n + alex - e)n-l + ... + an-rex - ey + (x - e)Sls! .
(4.5)

If Ls(x) E !/n.r , the continuity r-equirements at °and 1 give the relations

k

p<s)(l) = I c
j
SJS)(l),

j~l

(s = 0, 1,... , n - r). (4.6)
n-r+l

p<s)(O) = I dA(S)(O)
j~k+l

This is a nonhomogeneous linear system of 2(n - r + 1) equations In

2(n - r + 1) unknowns {Cj}~ , {dj}~+{+l and {aj}~-r.

In order to prove that this linear system is nonsingular, we consider the
homogeneous system corresponding to system (4.6). The existence of a
nontrivial solution of this homogeneous system implies the existence of a
nonzero spline Sex) E g~.r n Ll,r' Since every Sex) E g~,r can be written
as a linear combination of the eigensplines Six) which have different orders
of exponential growth at least on one side of the real axis, it follows from
the fact that Sex) E Ll.r , that Sex) = 0. This proves that the linear system
(4.6) is nonsingular.

The solution of the interpolation problem can then be given explicitly by

00 00

Sex) = L yvLo(x - () - v) + L: y.'Ll(x - () - v)
-00 -00

00

+ ... + L y~r-l)Lr_l(X - () - v).
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Since the fundamental splines and their derivatives are of exponential decay
as Ix I ---+ ± 00, it follows by imitating the reasoning in Lipow and Schoenberg
[4] that the above representation of the interpolatory spline is unique when
the data is of power growth. This completes the proof of Theorem 1.

5. SOME IDENTITIES

In order to prove Theorems 2 and 3 we shall need some identities which
we formulate as lemmas.

LEMMA 4. Let n, r be positive integers with n ;:? r + 1. Then the following
identities hold:

rIIn.r+l(f); A) IIn- 2•r- I(f); A)

= n{IIn_l,r(f); A)}2 - (n - r) IIn- 2•r(f); A) IIn.r(f); A), (5.1)

rIIn.r+l(f); A) IIn-l.r-I(f); A)

= -II~.rCf); A) IIn-I.rCf); A) + IIn.r(f); A) II~-I.rCf); A), (5.2)

where the prime denotes derivative with respect to ().

Proof The proof depends on the determinantal identity [1, p. 7]

I
D(a, c, f) D(a, d, f) I D( b f) D( d f)
D(b, c, f) D(b, d, f) = a" c",

where D(a, b, f) - D(a, b, f(I), ... , f<n» is the determinant formed from the
column vectors a, b, fll), ... , f ln ) E IRn+2. The techniques are the same as in [3]
(see also [2]) and we shall omit them here. I

The special case of (5.1) when () = 0 is given in [3].

LEMMA 5. If n ;:? r, then

II (f). 0) = (1 - f)rln-r+l)n.1' , • (5.3)

Proof It is clear that if r = 0, (5.3) is valid. From the generating function
(see [7])

00

(A - 1) eOZ/(A - ez) = I [An(f); A)jn!] zn
n~O

it is easy to see that

(5.4)

(5.5)
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and from (3.4) we have

nn.iB; A) = (A - l)n An(B; A). (5.6)

Hence IIn.1(B; 0) = (I - B)n, which proves (5.3) for r = l.
The identity (5.3) now follows on using the identity (5.1) for A = 0, by

easy induction on r.

6. HANKEL DETERMINANTS OF EXPONENTIAL EULER POLYNOMIALS

The polynomial lln,r(B; A) is closely related to the exponential Euler
polynomials An(B; A) generated by the relation (5.4) (see [7]). Set

an an- 1 an- r+1

Hr(an) =
an- 1 an- 2 an- r

an- r+1 an- r an- 2r+2

(6.1)

Then the following relation holds (see also [2]).

THEOREM 4. Let r = 1,2,.... For n ~ 2r - I, we have

H (
An(l); .\) ) = ( ) lln,r(B; .\)

r n! en, r (I _ .\)n-r+l

where
(_l)nr+[rj2] 1!2 !...(r - I)!

c(n, r) = '( _ I)' ( _ + I)' .n. n .... n r .

(6.2)

The proof follows from the identity (5.1) by using induction on r and is
exactly the same as for the special case when B = 0 given in [3] (see also [2]).

7. PROOF OF THEOREM 2

We shall first prove the theorem for n = rand n = r + 1. We first
observe that lln,r(B; A) is a polynomial of degree n - r + I in A and that the
coefficient of An-r+l is

Bn-r+l ( - ~ + I) ()n-r (n - r+ I) ()n-2r+2r- I

()n-r+2 (n - ~ + 2) ()n-r+l (n - r+ 2) ()n-2r+3
(-I )lr+l)(n-r+l) r - 1

()n G) ()n-l ( 11 ) ()n-r+l
r - I
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Using the fact that P(~,l~~~:;~~) = 1 (see [4]) it is easy to see that

IIn.r(O; A) = {(_l)r+lA}n-r+l Or(n-r+ll + lower order terms. (7.1)

From Lemma 5 and (7.1) we see thatIIrAO; A) is a first-degree polynomial
in Agiven by

(7.2)

Hence for 0 < 0 < 1, IIrAO; A) has exactly one zero A~r) of sign (-1)'. It
follows from (5.1) of Lemma I that rIIr+l,r+l(O; Air» IIH.r-I(O; Air» =
-IIr+l,r(O; Air» so that IImAO; Air» < O. Since [[mAO; 0) > 0 by
Lemma 2 and IIr+1.r(O; A) > 0 as IA1-+ 00 by (7.1), it follows that
flr+l,r(O; A) has exactly two zeros, one between 0 and Al and the other between
Al and 00 (or - 00) when r is even (or odd).

This proves the theorem for n = rand n = r + 1. The rest of the proof
follows by induction on n using the identity (5.1). I

8. PROOF OF THEOREM 3

Again our proof will proceed by induction on n. We shall assume that r is
odd, since the case for even r can be treated similarly.

From(7.2)itfoIIowsthatIIrAO; -I) = (I - ey - Or,IIr+l,r+1(O; -1) =
(I - 0)'+1 + Or+I and IIr-l,r-lO; -I) = (I - Oy-I + Or-I, so that (5.1)
gives

IIr+l.r(O; -I) = (r + 1)[(1 - oy - orF
- r[(1 - OY+1 + Or+1][(1 - 0)'-1 + Or-I]. (8.1)

The polynomial IIr.r(O; - I) obviously vanishes for 0 = ! and is a decreasing
function of 0 in (0, 1). The polynomial IIr+lAO; -1) is symmetric about
o= t and positive for 0 = I and negative for 0 = t. An easy computation
shows that II;+1,'(O; - I) is positive for t < 0 < 1. This shows that
IIr+1AO; -1) has exactly two simple zeros in (0,1). This proves the theorem
for n = rand r + 1.

The proofcan now be completed by induction on n using the identities (5.1)
and (5.2) and the relations (3.5) and (3.6). Indeed if we denote the zeros of
fln-l,r(O; -1) in the interval (0,1) by 0Jn-I) (j = 1,2,... , n - r) so that

(8.2)

then (5.1) and (3.5) show that for r :(: n :(: 2r - 1, IIn.rCO; -1) has at least
one zero in each of the intervals (0 oen-I» (o(n-I) 1) and (8(n-I) 8(n-I»

'1 , n-r' l' .1+1
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(j = 1,2,... , n - r - 1). Using (5.2) we conclude that IInj(); -1) has
exactly one zero in each of these intervals.

Similarly for n ~ 2r - 1, using (5.1), (3.6), and (5.2) we conclude that
IIn j8; -1) has exactly (r - 1) zeros in (0, 1) together with °and 1 if n is
even, and has exactly r zeros in (0, 1) if n is odd. I
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